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ABSTRACT 

The Space Command Optimizer of Utility Toolkit (SCOUT) is a mixed- 

integer linear program used by the U.S. Air Force Office of Aerospace Studies to 

help create a 25-year investment plan for space-related systems (e.g., space-based 

radars and space planes). SCOUT recommends a mix of current systems, "future 

concepts," and launches that minimizes shortfalls in task performance while 

adhering to constraints on budget, launch vehicle demand, launch vehicle 

availability, and logic governing the precedence and interdependence of systems. 

This technical report provides a mathematical description of SCOUT, describes 

several potential modifications to SCOUT, and reports computational experience. 

Our results suggest that SCOUT's computational times can be significantly 

reduced (from hours to minutes) and SCOUT's integrality gaps can be tightened 

by applying discount factors to both costs and tasking shortfall penalties, and by 

using continuous variables to model some research-and-development concepts. 



I. INTRODUCTION AND BACKGROUND 

The U.S. Air Force Space Command's operational tasks include: supporting space forces 

(e.g., launching and operating U.S. military satellites), tracking objects orbiting the earth, 

disseminating relevant information to warfighters (e.g., weather updates and missile warnings), 

and maintaining a combat-ready intercontinental ballistic missile force. The Space Command 

Optimizer of Utility Toolkit (SCOUT) is a mixed-integer linear program that selects from a pool 

of candidate systems a set of assets such as launch vehicles, satellites, and radars (see Figure 1), 

the dates of inception and discontinuance of use of these systems, and the number of launches 

(see Figure 2) by type and year that best satisfy Air Force Space Command's operational tasks 

over a 25-year horizon. (The appendix provides a list of tasks.) SCOUT adheres to constraints 

on budget, launch vehicle demand, launch vehicle availability, and logic governing the 

precedence and interdependence of systems. In 1997, Air Force Space Command used a version 

of SCOUT as one of several tools in a biennial investment analysis. Rankings derived from the 

analysis helped secure monetary support for the Military Space Plane, the Space-Based Radar, the 

Space-Based Laser, GEODSS Upgrades, the Satellite Threat Warning and Attack Reporting 

System, the Common Aero Vehicle, and Small Aperture Telescope Augmentation [Gooley 1998]. 

This technical report provides a mathematical description of SCOUT, details several 

modifications to SCOUT to reduce solution time and enhance solution quality, and reports 

computational experience. 

SCOUT candidate systems consist of research-and-development concepts and pre- 

existing weapon and defense programs. Space-based radars, radar tactical satellites, terrestrial 

weather sensor upgrades, and advanced electro-optical warning sensors are all examples of 

systems. Most systems require launch vehicles of a specific type, ranging from ultralight to 

ultraheavy, where the heavier launch vehicles can be used to satisfy lighter launch requirements. 

We assume that any single launch can only lift a single system into its orbit. 

Parnell, Conley, Jackson, Lehmkuhl and Andrew [1998] provide methods for quantifying 

a system's contribution towards task performance. SCOUT recognizes that systems contribute 

towards task performance in a non-additive manner. Each system is scored between 0% and 

100% in 10% increments according to the approximate percent of coverage (or contribution) it 

alone provides towards a single task. The contribution from several systems that perform the 

same task is either the maximum contribution of any single system or the maximum "synergistic 

contribution" of two or more systems. For example, if system A contributes a 30% task- 

performance level and system B contributes 40% to performing the same task, the total 



contribution to this specific task is only 40% performance without synergy. Two or more systems 

are synergistic if they together provide greater task performance than their maximum individual 

performance. 

SCOUT constraints include annual budget restrictions, budget constraints over a 

contiguous set of years (i.e., an "epoch"), annual launch vehicle requirements, dependency and 

precedence relationships among systems, and "bookkeeping" relationships. SCOUT has two 

budget constraints; each constraint has an elastic allowance (subject to a linear penalty per unit of 

violation) for exceeding its specified limit. Annual budget constraints restrict all costs incurred 

after a system is fully operationally capable (FOC) except launch costs. The FOC year for a 

system is the first year that a system contributes to meeting tasking requirements. Additional 

budget constraints restrict all costs over five-year epochs. These constraints enhance SCOUT's 

realism because some space systems require that the bulk of their costs be spent on research, 

development and initial launch. These activities generally occur prior to the realization of 

operational benefits from the systems. The additional budget constraints allow for more latitude 

than the annual budget constraints to pay for launch vehicles. Per-unit launch costs are not 

subject to strict annual budget requirements, because launch vehicles may be inventoried and 

subsequently launched when needed. Without this allowance, solutions would be precluded that 

require a large number of launch vehicles in a single year. 

SCOUT selects systems and system launches according to rules governing their 

compatibility and interdependence: (i) there must be sufficient launch capabilities to provide the 

required number of launches for a given system, launch vehicle type and year; (ii) a launch 

vehicle must be operational before it can be used to provide launches; (iii) systems dependent on 

a primary system can be operational only if the primary system is already operational; and 

(iv) prerequisite systems must be, or must have been, operational before a secondary system can 

become operational. 

SCOUT minimizes total penalties, composed of contributions from: (i) a penalty 

associated with shortfall in task performance over time; (ii) a penalty associated with the violation 

of either annual or epochal budget constraints; and (iii) a small penalty to discourage the model 

from spending additional money if no additional task performance is gained. All penalties are 

chosen to provide objective-function units of 1998 U.S. base-year dollar equivalents. 

In the following section, we present a review of previous literature on capital budgeting 

models used both in civilian and military arenas. Section 3 introduces a version of SCOUT 

developed by the Office of Aerospace Studies and the Naval Postgraduate School in 1997 and 

used by Air Force Space Command. Computational experience and an assessment of the quality 



of solutions obtained from the suggested modifications to SCOUT are given in Sections 4 and 5, 

respectively. Our results suggest that SCOUT's computational times can be significantly reduced 

(from hours to minutes) and SCOUT's integrality gaps can be tightened by applying discount 

factors to both costs and tasking shortfall penalties, and by using continuous variables to model 

some research-and-development concepts; solution quality is not sacrificed with these 

modifications. Conclusions appear in Section 6. 

Figure 1: An artist's rendition of the X-33 Venture Star (space plane) [United States Air Force 1999b], one 
of the concepts the Air Force may fund to satisfy its future operational tasks. The development of concepts 
such as the space plane often requires funding for ten years or more before any benefit is realized. The 
U.S. Air Force used a version of SCOUT, a mixed-integer linear program, to help plan the procurement of 
billions of dollars worth of space-related systems. SCOUT selects a set of systems, the dates of inception 
and discontinuance of use, and the number of launches by type and year over a 25-year time horizon. 



H. LITERATURE REVIEW 

SCOUT is a capital-budgeting model in the taxonomy of optimization modeling 

applications (e.g., Clark, Hindelang, and Pritchard [1989] and Weingartner [1963]). There are 

hundreds of published references to capital-budgeting models; most of these examples differ from 

SCOUT in two significant ways: (i) few address military applications, and (ii)few authors 

concern themselves with real-world, large-scale applications with complete decision-support 

implementations—as such, most earlier work is somewhere between theoretical and hypothetical. 

We are concerned with actually solving models much larger than most of those in the literature. 

Accordingly, the following citations are selected to provide context for SCOUT but do not offer 

guidance to enhance SCOUT. (The reader may omit this section without loss of continuity with 

the remainder of the report.) 
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Figure 2: A Titan IV/Centaur, an expendable launch vehicle able to lift a 10,000 pound payload into orbit, 
launches from Cape Canaveral Air Station carrying a Milstar satellite [United States Air Force 1999a]. 
SCOUT recognizes five launch vehicle types (based on payload capabilities) to ensure adequate launch 
resources for a dependent system (in this case, a satellite). SCOUT models other dependencies such as 
systems requiring the (not necessarily concurrent) existence of other systems, and synergistic relationships 
enhancing the simultaneous performance of several systems operating in tandem. 

In a methodological paper, Hummeltenberg [1985] proposes the use of Benders 

decomposition for solving capital-budgeting problems in which different interest rates are 

assessed for borrowing and lending. His model seeks to maximize available cash at the end of the 

planning horizon subject to balance of cash flow and borrowing constraints.   Hummeltenberg 



emphasizes the importance of the following factors: (i) problem formulation, (ii) the initial set of 

Benders cuts, (iii) choice of master-problem solutions, and (iv) cut selection if the.subproblem 

has multiple optimal solutions. Extensive computational testing is performed on both investment 

and financing projects with a ten-year time horizon. These test problems are solved in a few 

seconds on a mainframe computer and are used to illustrate the relationship between parameter 

values, the specific implementation scheme, and computational tractability. Although Benders 

decomposition may be a viable approach for improving SCOUT's performance, we cannot infer 

this based on the unspecified size and structure of Hummeltenberg's models. 

Several authors address capital budgeting for production and manufacturing. The 

following three references contain examples of problem instances smaller than SCOUT, which 

the respective authors claim are realistic for the scenarios offered. The contribution of the work 

lies in the managerial insights gained from the solutions, rather than from any advice on 

implementation. 

Keown and Taylor [1980] minimize manufacturing costs while adhering to 

environmental standards, and they introduce chance constraints to account for uncertainty in 

demand. They employ goal programming to minimize deviation from the following conflicting 

objectives, in decreasing order of importance: (i) meet environmental restrictions, (ii) recognize 

inventory storage capabilities, (iii) comply with budgets, (iv) minimize excess capacity, 

(v) contribute to profit, (vi) increase sales, (vii) satisfy demand, and (viii) open sufficient facilities 

to perform daily operations. Space availability for new warehouses is enforced as a hard 

constraint. A small example containing fewer than 20 constraints and 35 variables is solved. 

Kumar and Lu [1991] present a case study for a real-world capital-budgeting problem for 

a fertilizer production facility. They develop a mixed-integer linear program to account for 

economies of scale and system interdependencies. The model seeks to maximize profit subject 

to: (i) conservation of materials flow, (ii) budget adherence, (iii) demand satisfaction, (iv) raw- 

material availability, (v) plant capacity based on both physical and legal limitations, and 

(vi) interdependencies in decision making, e.g., the necessity to produce precursor chemicals. 

Their problem instance contains about 30 constraints and 70 variables; only about ten variables 

are binary. Data perturbation proves useful as a post-optimization tool. 

Lotfi, Sarkis and Semple [1998] apply a strategic capital-budgeting model to determine 

the benefit of replacing a traditional manufacturing system with an advanced "flexible 

manufacturing system." The goal of the model is to maximize the net present worth of a 

manufacturing system subject to restrictions on capacity, requirements that demand be met, limits 

on the number of production systems that can be operational simultaneously, and requirements on 



the continuity of operation (specifically, if a system becomes operational at some point in the 

planning horizon, it remains operational throughout that horizon). They transform their integer 

program into a model whose linear-programming relaxation yields integer solutions. Problem 

instances are generated that contain 24 variables and 10 constraints under the transformed 

formulation, and can be solved easily. 

Iwamura and Liu [1998] address a capital-budgeting model of production in order to 

demonstrate a new modeling approach. Similar to Keown and Taylor [1980], they employ 

chance constraints in a fuzzy, rather than stochastic, environment. Their model seeks to minimize 

deviation from (i) budget limits, (ii) physical space limits, and (iii) a profit goal. They develop a 

"fuzzy" simulation-based genetic algorithm to solve very small, randomly generated problems 

using a personal computer. 

A variety of literature applies capital-budgeting models to areas other than production. 

Again, these models are smaller than SCOUT, and the setting and nature of the decisions differ. 

Mamer and Shogan [1987] consider a capital-budgeting model applied to repair kit selection that 

requires choosing projects along with an associated set of activities; individual activities can be 

used to satisfy the requirements for more than one project. A fixed cost and resource utilization 

are associated with each activity. The formulation is a maximum-flow network model with a 

resource side constraint. Problem instances containing up to several hundred constraints and 600 

variables, a third of which are binary, are generated and solved via Lagrangian relaxation in less 

than three minutes on an IBM mainframe computer. The resulting optimality gaps (the difference 

between the best solution and the best bound) range from 1% to 30%, indicating that this solution 

technique is not reliable for all problem instances. 

Karabakal, Lohmann and Bean [1994] formulate a model for parallel replacement of 

resources subject to rationing constraints. Parallel replacement differs from serial replacement in 

that the former requires investment decisions to be made in each period of the planning horizon to 

adequately capture economic interdependencies between assets. The model seeks to maximize 

total net present value subject to conservation of flow and capital rationing (budget constraints). 

This model can also be viewed as a network model with side constraints. Randomly generated 

problems for a four- to ten-period time horizon containing no more than 120 constraints and 

1,000 binary variables are solved using a Lagrangian branch-and-bound algorithm on an IBM 

mainframe computer in generally less than a minute, although several run times of 30 minutes to 

about three hours are reported. Problems are solved to near-optimality in many, though not all, 

instances. 



Capital budgeting has been modeled for the military. Taylor, Keown and Greenwood 

[1983] address the procurement of military aircraft to satisfy military objectives in wartime and 

peacetime while minimizing violation of the following elastic constraints: (i) interdependence 

among weapon systems and the use of aircraft, (ii) ability to achieve a desired number of kills, 

(iii) budget limitations, (iv) aircraft payload and range, (v) aircraft maintenance feasibility, 

(vi) peacetime aircraft loss, and (vii) flexibility (interoperability) of systems with other allied 

systems. A small mixed-integer program containing approximately 25 variables and 25 

constraints is solved with a branch-and-bound algorithm. 

Brown, Clemence, Teufert and Wood [1991] develop a large-scale, real-world model for 

long-term planning to modernize the U.S. Army's helicopter fleet by taking the following actions: 

(i) manufacturing aircraft via completely new production plans, (ii) modifying existing 

production campaigns to incorporate aircraft enhancements, (iii) extending the life of existing 

aircraft through upgrading, and (iv) retiring outdated aircraft. The model seeks to minimize 

operating and maintenance costs subject to limits on levels of performance, average age, 

expenditure, production and manufacturing requirements, and factors necessary for the 

conversion of aircraft. Research-and-development cost streams are similar to those in SCOUT, 

i.e., initial costs are incurred before an investment becomes fully operationally capable. An 

actual scenario with a 25-year time horizon, 16 helicopter types, 300 potential production 

campaigns, and five production lines is reported. The model contains about 4,000 constraints and 

21,000 variables, 300 of which are binary. Most problem instances are solved to optimality in five 

to ten minutes on an IBM mainframe. Solutions reveal that the aircraft fleet had to be reduced, 

resulting in near-term mission deficiencies, and that significant benefits accrued when funding 

levels over the planning horizon were allowed to be non-uniform. That is, much better outcomes 

resulted from rescheduling expenditures but not changing their total. This insight led to 

restricting budget plans in terms of total program costs governed by annual targets to smooth, but 

not completely restrict, the pattern of expenditures over time. Contrary to preconceived notions, 

certain nearly-new aircraft were not cost effective. Furthermore, promising alternatives to the 

then-current planning modus operandi necessitated violations of other resource and policy 

guidelines. The model has been credited with changes the Army adopted and approvals by 

Congress and the White House. The work of Brown, Clemence, Teufert, and Wood provides our 

best example of a model both commensurate in size and related in application to SCOUT. 

However, the decisions and constraints differ, and we cannot be certain of such good 

computational performance with SCOUT. 



Capital-budgeting models have been formulated and solved with actual data in a variety 

of Masters theses at the Naval Postgraduate School. These theses provide excellent examples of 

real models; however, they tend to be smaller than SCOUT, and special implementation 

techniques for improved performance are not offered. Donahue [1992] examines the question of 

which Army projects to fund in long-term requirements planning. The model is a multi-criterion 

optimization model. Continuous variables are used to represent the fraction of aspired funding a 

proposed project (analogous to a concept in SCOUT) will be allocated in a given year. Binary 

variables are used to represent logical relationships between projects. The objective is primarily 

to obtain a desired level of fighting capability while secondarily preserving balance across all 

areas of the force. Constraints are imposed to enforce: (i) the funding of government-mandated 

projects and projects requiring minimum expenditures, (ii) limits on budget and operational costs, 

(iii) precedence rules for project stages, (iv) relationships between discrete and continuous 

variables, and (v) required relationships among mutually exclusive, synergistic, and subordinate 

projects. We note that the constraints on initiating synergistic and subordinate projects are 

similar in spirit to the synergy and precedence constraints in SCOUT. An instance of the model, 

which contains over 5,000 variables, 230 of which are binary, and about 5,000 constraints, is 

solved on a personal computer in a few seconds. The model has been used both by the Special 

Operations Command to assemble their Program Objective Memorandum and by the Army 

Training and Doctrine Command to assist in research, development and acquisition expenditure 

planning [Anderson 1999]. 

Hide [1995] develops a model for determining a maximally effective purchasing schedule 

for anti-armor warfare equipment subject to budget limits and selection restrictions. He considers 

both positive and negative effectiveness correlations between pairs of weapons. By changing the 

budget constraints and using different measures of effectiveness, different purchasing plans are 

realized. His model contains about 600 constraints and an equal number of variables, of which 

almost 100 are binary. Most problem instances are solved in less than two minutes on a personal 

computer. Carr [1996] addresses the procurement of theater missile-defense systems subject to 

constraints on budget, production, logical relationships concerning the constitution of a complete 

weapons system, and operational requirements. He evaluates different scenarios resulting from a 

modification of budget restrictions, weapon systems' operational requirements and associated 

procurement policies, cost parameters, and production rates. This model contains about 1,800 

constraints and approximately 950 variables, of which 24 are binary. Most instances are solved 

in less than two minutes with a personal computer. 



Gross [1996] develops two models to maximize the effectiveness of weapons systems 

using a given procurement schedule. Both models contain constraints on budget, minimum 

effectiveness, production limits, and the relationship between options and weapons systems. 

Tradeoffs are analyzed among budget levels, effectiveness measures, weapons systems, and 

different regions of conflict. The simpler model contains about 1,400 constraints and 650 

variables, of which approximately half are binary. Instances are solved on a personal computer in 

a few minutes. The more complicated formulation, allowing more detailed system effectiveness 

correlation, contains over 22,000 constraints and almost 16,000 variables, almost all of which are 

restricted to be binary. These problem instances are solved on an IBM RS6000 Model 590 

workstation in about one hour. 

In solving many large-scale applications such as the military models mentioned above, it 

is common to elasticize constraints. This allows a greater set of solutions to be considered and 

can increase model tractability without sacrificing its initial intentions. For example, budget 

limits are often relaxed by adding a variable to account for over- or under-spending. A "high" 

linear penalty is applied to this term to discourage spending beyond the original limits. Other 

inequality constraints expressing limits or desired goals may be relaxed in the same spirit. 

Brown, Clemence, Teufert, and Wood [1991], and Ihde [1995], among others, provide 

illustrations of models with elastic constraints. Brown, Dell, and Wood [1997] cite additional 

real-world applications containing elastic constraints. 



IE. DEFINITIONS AND FORMULATION FOR SCOUT 

We now present SCOUT adhering (as closely as possible) to the notation adopted for the 

Office of Aerospace Studies' initial implementation. Units for data and decision variables are 

given in brackets next to the respective definition. It is understood that compound index sets are 

only defined for the instances that exist. 

A. INDICES 

(i) Tasks and options 

hf 

k 

1,1' 

(ii) Time 

t, f, t" 

s,s' 

B.  SETS 

(i) Years 

(ii) Performance levels 

Dvtt 

tasks 

systems, concepts and current programs (e.g., space-based 

radars, radar tactical satellites, terrestrial weather sensor 

upgrades); we use/ exclusively to denote systems on which 

other systems^" depend 

increasing levels of task performance (1-10) 

launch vehicle types (e.g., ultralight, light, medium, heavy, 

ultraheavy) 

fiscal year index (e.g., t = 1 (1998), 2 (1999),..., 25 (2022)); we 

use t' (t") as the start year index when paired with indexy (f) 

end year index for a typey system; and end year index for a type 

f system, respectively 

epoch (contiguous set of years) 

set of contiguous years t in epoch/» 

set of attainable performance levels k of task / in year t 

10 



Mxik 

(iii) Systems 

Lr, 

Lsi 

Or 

Pre 

Syn 

Tvt>s 

TvW 

Q, 

set of maximum performance levels k for task / with systems of 

type/(this set contains as many elements as there are systems 

that can meet a given tasking requirement /) 

set of systemsy requiring a launch vehicle of type / or greater 

set of systemsy' providing launches of type / 

set of systemsy 

set of system pairs (/,/) in which system./ can only be used 

while system/ is operational 

set of system pairs (/,/) in which systemy cannot become 

operational unless system/has been developed to operational 

capability (differs from Ifi(jjr) in that systemy may continue to 

operate after/ ends operation) 

set of "synergistic" system pairs (/,/) 

set of systemsy* that begin operation in year t' and end in year s 

(may include dependent systems; start and stop years refer to the 

operational lifetime of a system, which does not necessarily 

match its spending lifetime) 

set of systems/ that begin operation in year t" and end in year s' 

but includes only systems on which other systems depend 

set of systemsy that begin operation in year t' and end in year s 

with non-zero cost in year t, wherey eOn Tvt.s ,t'<t + 

TIMETFOCj, and s > f. 

C. DATA 

(i) Time intervals 

TIMETFOCj 

INTERVAL 

number of years of non-zero costs for systemy until the year 

prior to FOC [years] 

length of interval which budget constraints span [years] 

11 



(ii) Objective function weights 

BIGM 

BUDGM 

SMALLM 

(iii) Budget limits 

BUDGt 

BUDGP 

(iv) Costs 

COSTjt(t-t'+TIMETFOCfl) 

UNITCOSTj, 

(v) Elastic penalties 

PENit 

(vi) Launch requirements 

BIGMLRji, 

LNCHREQjt 

weight for task performance shortfall [millions of 1998 penalty 

dollars per million 1998 US dollars] 

objective function weight for total expenditures [millions of 

1998 penalty dollars per million 1998 US dollars] 

objective function weight for budget violations [millions of 1998 

penalty dollars per million 1998 US dollars] 

budget allocated for year t [millions of 1998 US dollars] 

budget allocated for epoch/? [millions of 1998 US dollars] 

cost to develop systemy incurred in year t for the 

(t-t'+TIMETFOCj+Yf* year of non-zero costs; this cost excludes 

launches, and t'-TIMETFOCj<t [millions of 1998 US dollars] 

cost per launch in year t for a launch systemy [millions of 1998 

US dollars per launch] 

penalty per level of task / performance shortfall in year t 

[millions of 1998 US dollars per unit shortfall in task 

performance] 

maximum number of systemy launches for launch type / in year t 

[launch] 

number of required launches for systemy in year t (where for a 

systemy, an eligible year t is referenced from the first FOC year, 

t', and t'-TIMETFOCj<f) [launch] 

12 



D. VARIABLES 

(i) Continuous, nonnegative variables 

bover, amount by which annual budget constraints are exceeded in year 

t [millions of 1998 US dollars] 

loverp amount by which epochal budget constraints are exceeded in 

epoch/? [millions of 1998 US dollars] 

xdevit shortfall in meeting task / in year t [unit shortfall in task 

performance, i.e., 1,2, 3,...] 

xrtjii number of systemy launches in year t with a launch vehicle of 

class / [launch] 

(ii) Binary variables 

f 1   if system j is started in year t' and operated until year s 
Xjfs=     \ 

[ 0   otherwise 

E. FORMULATION 

minz = BIGM*^PENU * xdevit + (la) 
if 

/725/INTERVALl 25 ^ 

+ SMALLM* "V loverp + V bover. (ib) 

+BUDGM* 
f \ 
YJYLUNITC0STß *XnJ" +E    ^COSWf+TlMETFOC^) *Xß's 

^ j     I     t t   j/.seCi, J 

(lc) 

subject to 

X COSTMt_,+nMETF0C y+I) * xjVs < BUDG, + bover,        W 
j,t\^n, (2) 
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f \ 
X ^UNITCOSTJt*xnjlt 

wv J t*T, 

+ 

(3) 

2  E COSTß{t-uTiMETFocj+\) * */* ^ BUDGp + loverp       \/p 

EEE    E    ^^^öy^JWKTFOC^D^yr^EE^^        V/'' (4> 
r'S Ä/  /'a/ jeLrrr\Tv,,s /'£/ yeZj,, 

*"./* ^YIaBIGMLRß< *XßS V/,/,7 € Is, (5) 

*y^E2>/<v W'*      V(j,j')eSyn<Jlfi,jeTvt,s,feTv't., (6) 

*/* *E*/,v V''>5>*'      VUJ^eVreJeTVfiJ'eTv'n (7) 
ra' 

*üfev„ + J]2 ^[max{£} - £ +1] je,.,., > max{£} -k +1 Vi,t,ke Dvit (8) 

6overr>0  V?,     /overp>0  Vp,     xdevit>0  Vi,t,     xnjlt>0  Vj,l,t, 

xß.s>0 and  binary Vj,t',s 
(9) 

The objective function minimizes total 1998-penalty dollars, comprising contributions 

from: (la) the penalty associated with annual shortfall in task performance, (lb) the penalty 

associated with the violation of either annual or epochal budget constraints, and (lc) a small 

penalty to discourage spending if no additional task performance is gained. 

Constraints (2) are annual elastic budget limits for expenditures excluding launch costs. 

SCOUT uses a system's FOC year and the years of non-zero funding before FOC (i.e., 

TIMETFOC) as references for the system's cost stream. For example, suppose system j must 

incur TIMETFOC) = 3 years of non-zero funding before it is started in year f = 5. In year t = 4, 

the cost incurred is COSTj3, where 3 corresponds to the third year of non-zero funding incurred by 

the system. Constraints (3) elastically enforce budget constraints including launch costs for each 

epoch in the planning horizon, where an epoch has a total length of INTERVAL years. The costs 

consist not only of those costs incurred before the system is fully operational, as in constraints 

(2), but also of annual per-launch costs. 
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Constraints (4) require that the total number of launches provided in each launch class in 

a given year t must meet or exceed the total number required in that year. As in the previous two 

constraints, time for the required number of launches is measured with respect to the first year of 

non-zero costs for the system. The indexing, therefore, parallels that of the COST parameters in 

the previous two constraints. Constraints (5) require that a launch system j be operational in a 

given year t before it provides launches (of class /) in that year. Constraints (6) allow dependent 

systems j to be operational in a given year only if all of the systems f they require are operational 

in that year. Constraints (7) ensure that precedence relationships hold across time. A precedence 

relationship requires system/ be operational before system y can become operational. However, 

the two systems are not required to be operational simultaneously. Constraints (8) determine the 

annual task shortfalls. Constraints (9) enforce nonnegativity and integrality requirements. 

SCOUT is implemented in the General Algebraic Modeling System (GAMS) [Brooke, 

Kendrick, Meeraus, and Raman 1997] with the CPLEX solver, Version 5.0 [ILOG 1998]. The 

model runs under an AIX operating environment on an IBM RS6000 Model 590 workstation with 

0.5 gigabytes of RAM. After the CPLEX presolve (during which the model is simplified by, for 

example, eliminating redundant rows and columns), the model contains approximately ten 

thousand constraints and five thousand variables; about half of the variables are binary. 
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IV. COMPUTATIONAL RESULTS 

We explore computational performance resulting from several SCOUT modifications. 

Our goal is to examine different versions of SCOUT that maintain the model's fidelity and show 

promise in reducing both computational requirements and relative integrality gaps. (The gap is 

the normalized difference between the cost of the best solution found (BI) and a lower bound 

(LB) on the best possible solution. Specifically, for a non-zero lower bound, the gap is defined as 

100%*[BI-LB]/LB.) We explain the modifications to SCOUT, and then compare computational 

results for the original model and the models with modifications. The following chapter gives an 

analysis of the effects of selected modifications on solution quality. 

A. MODIFICATIONS 

We employ a discount factor to reflect the facts that: (i) fixed and variable costs must be 

expressed in constant-year dollars, and (ii) because the future is uncertain, it is more important to 

fulfill performance requirements in the near term than at the end of the planning horizon. 

Employing the discount factor helps to differentiate between present and future spending, and the 

relative importance of meeting task shortfalls in the near term and the far term, respectively, and 

thereby enhances the solver's ability to distinguish among admissible solutions. We modify the 

parameters, UNITCOSTJt, COSTj^+miErFOC^i), and PENU, to incorporate the calendar year / in 

which the cost is incurred; this ensures that all costs are expressed in constant-year dollars. We 

do not modify the B UDGt or B UDGP parameters. 

To attempt to guide the branch-and-bound algorithm in a logical manner, we specify a 

branching hierarchy, i.e., an order in which the binary decisions (of whether to implement a 

system for a given time interval) are evaluated. We consider the union of systems providing 

synergistic support, or necessary for a subordinate system to be brought on line, regardless of the 

time interval. In three different trials, i.e., test runs, we establish two, three and four priority 

levels within the branching hierarchy for these independent systems, giving higher priority to 

those systems with more dependents. This yields a methodical way for the search procedure to 

progress, i.e., by making decisions about certain "principal" systems before making decisions 

concerning dependent systems. 

Currently, systems can be introduced each year for the first five years of the planning 

horizon, and only in odd calendar years thereafter. (This reduces allowable start-year and end- 

year combinations.) This change was made from an earlier version in which systems could be 

brought on line during any year of the planning horizon. We extend this idea to further decrease 

allowable start-year and stop-year combinations.    Specifically, we retain the one-year time 
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intervals for the first four years, and the two-year intervals for the subsequent six years. After the 

tenth year (i.e., 2007), we allow systems to be introduced every three years for the next nine 

years. Systems can last be introduced in the twenty-third year of the horizon, i.e., year 2020. 

Although this is a restriction of the original problem, it realistically reflects the greater need to be 

precise with timing in the immediate future rather than in the distant future. 

Each binary variable represents a decision such as whether to invest in a launch vehicle 

or not: One cannot obtain half a launch capability with half a launch vehicle. However, for 

variables representing research-and-development initiatives, it is reasonable to consider scenarios 

in which an initiative may be partially funded, or may be completely funded, but not necessarily 

continuously over the time horizon. Because we cannot explicitly identify potential research-and- 

development concepts from the data, we nominate those variables that do not provide synergistic, 

prerequisite or simultaneous support to another system, and neither require a launch vehicle nor 

provide one. We allow these variables to be continuous-valued, which significantly reduces the 

number of binary variables in the model. We can embellish this modification by requiring each 

fractionally-funded system to be fully-funded by the end of the horizon. Let Rad be the set of 

research-and-development concepts, let xrjt'S be the continuous decision variables corresponding 

to starting a concept./ in year /' and operating it until year s, and let xdj be the binary decision of 

whether concept j is ever brought on-line during the time horizon. Then, additional constraints 

are: 

xrJt.s<xdj Vt',s      VjeTv^nRad and 

£2>,,, = xdj Y/e Tvt,s nRad. 
t'   sit' 

We implement our computational trials for two test cases: (i) Test Case 1 represents an 

original SCOUT model (September 1998) using an updated (January 1999) set of eligible 

systems, start, and end dates, and (ii) Test Case 2 represents a newer (January 1999) SCOUT 

version with updated (January 1999) data. We use X.l and X.2, respectively, to represent the 

results, where X denotes a trial number. We use CPU time and the relative integrality gap as 

performance gauges. We use relative integrality tolerances of 5% and 10%, as noted, as stopping 

criteria. 

We now summarize our computational experiments. In the next section, we provide 

numerical results based on these trials. The initial run is made without any modifications. In 

Trials 2.1, 2.2, and all subsequent (X.l and X.2) trials, we use a 2% "penalty degradation rate" for 

deviation from a shortfall in task performance, and we adjust constant-year dollar cost parameters 
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UNITCOSTp, COSTftu'+TiMETFoCj+i) so that cost grows at a rate of 2.5% annually (i.e., after 

adjusting for the time value of money, a system is 2.5% more expensive one year in the future). 

Trials 3a. 1 (and 3a.2), 3b. 1, and 3c. 1 reflect the results of discounting and priority branching with 

four, three, and two categories, respectively. (We also implemented a branching hierarchy in 

which priority was given to the xdj variables over the xJt>s variables, and in which the opposite 

priorities were assigned; no improvement in performance was realized, so we do not report the 

results from these trials.) Trials 4.1 and 4.2 demonstrate the effect of using discounting and 

reducing the number of eligible start-year and stop-year combinations for a system. In Trials 5.1 

and 5.2, we do not require research-and-development initiatives to be fully funded by the end of 

the planning horizon. Trials 5a. 1 and 5a.2 reflect the additional requirement that all selected 

research-and-development initiatives be completely funded, but not necessarily continuously by 

the end of the time horizon. Table 1 displays the characteristics of each trial. 

Trial Characteristics 

original model 
cost and penalty discounting 

3a 
3b 

cost and penalty discounting and priority branching with four categories 
cost and penalty discounting and priority branching with three categories 

3c cost and penalty discounting and priority branching with two categories 

cost and penalty discounting and a reduced number of start-year and stop-year combinations 

cost and penalty discounting and continuous-valued research-and-development variables 
5a cost and penalty discounting and continuous-valued research-and-development variables where 

chosen initiatives must be fully funded by end of horizon 

combination of Trials 3 and 4 

combination of Trials 4 and 5 

combination of Trials 3,4, and 5 

Table 1:   We modify the original model (Trial 1) in Trials 2-8 and use X.1 and X.2 to respectively 
represent the results, where X denotes the trial number and the suffix denotes the data set. 

B.  RESULTS 

The original instances for both test data sets (i.e., Trials 1.1 and 1.2) yield about a 19% 

relative integrality gap after 5,000 seconds. In the first case, after nearly two hours, the gap is 

reduced below the tolerance goal of 10%, whereas in the second case, computer memory 

limitations prevent an improvement. A more stringent relative integrality tolerance of 5% is not 

satisfied in either case.  We report results for both test cases in Tables 2 and 3 for the original 
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instances and the modifications using different required tolerances (i.e., 5% and 10%) as stopping 

criteria. 

Performance is much improved with the addition of discounting (Trials 2.1 and 2.2). The 

gap is substantially reduced in both instances, though the run time for Trial 2.1 is far less than that 

for Trial 2.2. The priority branching scheme with fewest categories yields the best performance 

in Test Case 1; however, the result is slightly worse than that obtained without priority branching. 

Priority branching works well in Test Case 2; a solution within 10% of the optimal is obtained in 

one-fifth of the CPU time. Results for Trial 4.1 are not quite as impressive as those obtained in 

Trial 2.1. For Test Case 2, the run time for Trial 4.2 is lower than in Trials 2.2 and 3.2 for a 

solution guaranteed to be within 5% of the optimal; however, the run time for a solution 

satisfying the less stringent tolerance of 10% requires substantially more time to obtain. Trials 

5.1 and 5.2 provide better results than Trials 2.1-4.1 and 2.2-4.2, respectively: in less than ten 

minutes of CPU time, we obtain solutions within 5% of optimal. 

We add three trials to the second test case combining some modifications (see Table 1). 

In addition to the discount factors, Trial 6.2 combines priority branching and the change in time- 

period granularity. Trial 7.2 combines the change in time-period granularity and the introduction 

of continuous-valued research-and-development concepts. Finally, Trial 8.2 combines all three of 

these modifications. 

requested gap 

Trial 

10% 

time (seconds) 

5%            fi 

time (seconds)    | 

1.1 (original) 6,862 74,909* 

2.1 489 482 

3a.l 704 702 

3b.l 552 552 

3d 1,067 1,067 

4.1 464 4,355 

5.1 305 305 

5a.l 436 696 

Table 2: Computational results for the original (September, 1998) SCOUT model when requiring a 
solution guaranteed to be within 10% and 5% of optimal. For example, Trial 2.1 requires approximately 
eight minutes (482 seconds) to find a solution within 5% of the optimal. In Trials 2.1 through 5a.l (when 
requiring a solution within 10% of the optimal), a relative gap half as large, on average, can be achieved in 
about one-fourteenth of the time required for the original model. *This run was terminated (before 
achieving requested gap) due to memory limitations. 
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In general, for both test cases, the modifications yield solutions with less than a 10% 

integrality gap in a few minutes. Solutions with the modified formulation are not only obtained 

more quickly, they yield lower relative integrality gaps. Trials 4.2, 5a.2, and 8.2 are the only 

exceptions to this performance improvement; however, in the former two cases, although the run 

time is not particularly impressive when compared with the original scenario, the relative 

integrality gaps are much lower. 

Moderation is a virtue when setting the relative integer tolerance. We observe that the 

solution obtained with this tolerance set at 10% is usually the best solution obtained within a 

reasonable amount of time. Trials 1.1, 2.2, 3a.2, 6.2, and 7.2 illustrate this point well. Trial 5a. 1 

provides the only strong counter-example to this argument. In actuality, the integrality gap must 

only be small enough to allow unambiguous comparisons of alternate, competing scenarios. The 

superiority of a scenario can be established if its best objective function value dominates the best 

that could conceivably be achieved with the competing version, regardless of the magnitude of 

the integrality gap for either scenario. 

requested gap 

Trial 
10% 

time (seconds) 

5% 

time (seconds) 

1.2 (original) 4,110* — 

2.2 3,375 25,051 

3a.2 667 54,596* 

4.2 6,553 6,553 
5.2 576 581 

5a.2 4,214 4,225 

6.2 640 78,685* 

7.2 497 5,269 
8.2 11,260* —   . 

Table 3: Computational results for the January 1999 SCOUT version when requiring a solution 
guaranteed to be within 10% and 5% of the optimal. For example, Trial 2.2 requires approximately fifty- 
six minutes (3375 seconds) to find a solution within 10% of the optimal and almost seven hours (25,051 
seconds) to obtain a solution within 5% of the optimal. In Trials 2.2 through 7.2 (when requiring a 
solution within 10% of the optimal), a relative gap about one-quarter as large, on average, can be achieved 
in less than 60% of the time required for the original model. *Runs terminated (before achieving requested 
gap) due to time or memory limitations; - data not reported due to excessive run time of the model. 
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V. QUALITY OF SOLUTIONS 

The modifications we made to the model are designed to reduce the relative integrality 

gap and decrease solution time. Although we have, in general, accomplished these goals, we 

would like to assure ourselves that making modifications to the model, such as adding discount 

factors and introducing continuous-valued research-and-development variables, has not 

inherently changed the nature of the solutions from those obtained with the original models (i.e., 

September 1998 and January 1999). We focus our analysis on the solutions obtained from the 

second test case. 

The first modification imposes a discount factor for the shortfall in task performance in a 

given year. We argue that performance shortfalls should be penalized more heavily in the near 

term because these performance levels can be determined with more certainty than future 

taskings, and that lack of proximity mitigates severity. However, an outcome where an 

increasing number of shortfalls occurs as time progresses would be undesirable because an 

unacceptably high amount of tasking shortfall may occur within a relatively short amount of time 

near the end of the horizon. For each year in the planning horizon, we measure the deviation 

from required tasking, obtained from models for the corresponding trial cases without the 

confotmding effects of cost discounting (Trials X.3). We compare each amount of shortfall 

against the original case. In the absence of cost discounting, the models are more difficult to 

solve; hence, we use the best solutions found in a "reasonable" amount of time, i.e., no more than 

several hours. In many instances, we actually find that the taskings are met to a greater extent 

with the presence of the discounting factor for the shortfall penalty. 

Table 4 lists relative tasking shortfalls for selected trials as the ratio of the sum of tasking 

shortfalls in the original model to the related model with penalty discounting. Ratios are given 

for each year in the planning horizon. A ratio greater than 1 indicates that the trial meets the 

tasking requirements to a greater extent than the original model. We suggest that the presence of 

the discounting factor helps the solver distinguish among many similar solutions; the 

improvement in meeting tasking requirements is actually a function of a better solution (i.e., a 

solution with a lower gap). This is best illustrated by Trial 3a.3, which differs from the original 

model only in branching hierarchy and the imposition of the penalty discounting. The former 

solution possesses a 5.1% gap whereas the best solution obtainable from the latter case possesses 

a gap of 19.4%. Conversely, for those cases in which the absence of cost discounting results in a 

relatively poor solution, taskings are not met as well overall as in the original model. Trial 6.3 

with a 50% gap provides the best example of this. 
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Ratio of Original to Trial tasking shortfall fXDEV) Values for Each Year fond ran»         1 
Year            Trial 3a.3f5.1%1 Trial 7.3 T5 6«/^ Trial 2.3 n 5»/^ Trial 6.3 (5Q%\ 
1998 1.000 1.000 1.000 1.000 
1999 1.000 1.000 1.000 1.000 
2000 1.002 0.989 1.000 0.965 
2001 0.995 0.974 1.012 0.934 
2002 0.995 0.997 1.012 0.970 
2003 0.995 0.997 1.012 1.066 
2004 1.000 0.973 0.977 0.865 
2005 1.000 0.973 0.977 0.904 
2006 1.007 0.996 0.994 0.819 
2007 1.007 0.996 0.994 .1.116          1 
2008 1.016 0.984 0.960 0.949 
2009 1.016 0.984 0.960 0.949 
2010 1.057 1.087 0.985 0.970 

1         20U 
1.057 1.082 0.985 0.970 

2012 1.009 0.999 0.955 0.880 
2013 1.021 1.012 0.967 0.922 

I         2014 
1.038 1.028 0.984 0.950 

I         2015 1.038 1.024 0.984 0.950 
2016 1.044 1.029 0.983 0.933 
2017 1.044 1.029 0.983 0.771 
2018 1.056 1.069 1.021 0.801 
2019 1.056 1.069 1.021 0.783 
2020 1.047 1.060 1.008 0.774 
2021 1.047 1.060 1.008 0.732 
2022 1.065 1.094 0.891 0.690 
2023 1.065 1.105 0.861 0.552 

Table 4: Comparisons between the original case and selected trial cases where we only discount penalties 
for the shortfall in task performance. Given are ratios of the sum of deviations from performance 
standard for each year in the planning horizon, i.e., a ratio greater than 1 indicates that the trial meets 
tasking requirements to a greater extent than the original model. For example, deviations from tasking 
requirements are the same for the original model and Trial 3a.3 for 1998 and 1999. Tasking requirements 
are met to a greater extent with the original model for years 2001-2003. In all other time periods, Trial 
3a.3 matches or outperforms the original model - most significantly, in the last few years. Gaps reported 
and solutions used reflect the best obtainable in a "reasonable" amount of time. 

We also note that both annual and epochal budget over-expenditures occur in the solution 

of the original model, whereas they are absent from the trial cases in which the gaps are about 

5%. As expected, the poorer-quality solutions (Trials 2.3 and 6.3) yield over-expenditures, the 

greater of which occurs in the solution with the higher gap (Trial 6.3). These numerical results 

appear in Table 5. Therefore, the addition of the discounting factor provides relatively good 

solutions with respect to budget overspending. The overspending that does occur could be 

mitigated by a variety of modeling alternatives, for example, with the addition to the objective 
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function of a piecewise-linear penalty term (increasing the penalty with the amount of 

overexpenditure). 

Table 5: Budget over-expenditures for the original model and selected trial cases where we only discount 
penalties for the shortfall in task performance. For example, in Trial 1.2, budgets excluding launch costs 
are exceeded in 2001 and 2008 by $133.5 and $18.2 million, respectively; budgets considering launch 
requirements are exceed by $274.9 and $758.9 million in 2017 and 2022, respectively. Gaps reported and 
solutions used reflect the best obtainable in a "reasonable" amount of time. 

We must also evaluate the quality of solutions with the introduction of the continuous- 

valued research-and-development concepts. By the criteria discussed in Section IV.A, about 80% 

of the systems qualify as research-and-development concepts, and of the approximately 15,200 

valid start-stop combinations, more than 12,500 correspond to those associated with research- 

and-development projects. Allowing a large number of fractional concepts could result in an 

unimplementable solution if any of the following materialized: (i) an inordinate number of 

fractional concepts, (ii) a large number of concepts with funding streams split into small 

allocations many times over the horizon, or (iii)many fractionally-funded research-and- 

development concepts receiving only a small proportion of their total budget. 

We find none of these to be the case. Table 6 demonstrates that in the four relevant trials, 

we find no more than 12 fractionally-funded research-and-development concepts even including 

Trial 8.2, which exhibits fairly poor computational performance. Overall, fractionally-funded 

concepts account for no more than 20% of the total number of funded systems. 
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Trial Non- R&D 
Number of Systems Funded 

% fractional systems    j R&D: integral R&D: fractional 
5.2 32 23 9 14% 

5a.2 41 23 8 11% 
7.2 32 17 12 20% 

Less» 
8.2 27 19 11 19% 

Table 6: Relative numbers of fractional and integral systems funded. For example, of the 64 systems 
funded in Trial 5.2, 32 are non-research-and-development concepts, 23 are research-and-development 
(R&D) concepts that are allocated full funding in one allotment, and 9 receive fractional funding. These 
nine concepts constitute only 14% of the total number of funded systems. In all cases, at most one-fifth of 
the systems are fractionally funded. 

Additionally, we note that at least half of the concepts in each trial receive funding only 

once throughout the horizon (with the exception of Trial 5a.2); in these instances, there is no 

change to the nature of the funding stream, but rather to the total amount of money allocated to a 

concept. Of those concepts that are funded multiple times over the horizon, the vast majority of 

these are provided with partial funding no more than twice throughout the horizon. These results 

are displayed in Table 7. 

Number of Research-and-development Concepts With the Following Number of "Allocations"  I 
Trial 

5.2 

5a.2 

7.2 

8.2 0 

Total 

12 

11 

Table 7: Only a modest number of research-and-development concepts are allocated fractional funding, 
and most of these receive partial funding only once throughout the horizon. Of this modest number, there 
are a few instances of a concept receiving funding in three or even four allotments. For example, five 
fractionally-funded concepts in Trial 5.2 receive funding only once during the horizon; three receive 
funding twice, and one concept receives three funding allotments. 

Finally, in two of the three cases in which concepts are not required to receive full 

funding over the horizon, over 65% of them are allocated at least 50% of their funding. In the 

third case, Trial 8.2, more than half of them are allocated at least 50% of the requested funding. 

Most concepts receive full funding, though sometimes through two or more allotments over the 

horizon. We present numerical results in Table 8. 
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Number of Research-and-develoDment Concepts With the Following Percentage of Funding 

Trial 100% 80-99% 50-79% 20-49% <20% 

5.2 3 0 3 0 3 

7.2 6 0 4 0 2 

8-2          I            5 0 1 3 2 

Table 8: Of the research-and-development concepts receiving fractional funding, for the trials we tested, 
more than half receive at least 50% of their desired allocation. In a few instances, concepts receive full 
funding divided into two or more allotments over the horizon. For example, of the nine fractional 
concepts receiving funding in Trial 5.2, three of them receive full funding (in several allotments), three 
receive between 50% and 79% of their funding, and three concepts receive less than 20% of their required 
funding. 

Allowing the integer variables representing research-and-development concepts to be 

relaxed yields good-quality solutions quickly. Furthermore, only a scant number of the research- 

and-development concepts assume fractional values. Most of the fractionally-funded concepts 

receive a significant portion of their funding in few allotments. However, this outcome cannot be 

guaranteed. Additionally, the utility of a fractional concept is assumed to yield a linear 

contribution proportional to its fractional funding allotment. It may be unreasonable to assume 

that a concept with half its funding can contribute half the utility of the same fully-funded 

concept, or, perhaps, that a concept funded in this manner would become fully operationally 

capable after the same amount of time as a concept with integral funding would. The Air Force 

Materiel Command Office of Aerospace Studies must judge whether this shortcoming is 

acceptable, possibly changing the set of research-and-development concepts accordingly. 
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VI. CONCLUSION 

SCOUT is a mixed-integer linear program that recommends a mix of current systems, 

future concepts, and launches to minimize shortfalls in task performance while adhering to 

constraints on budget, launch vehicle demand, launch vehicle availability, and logic governing 

the precedence and interdependence of systems. Model instances contain about ten thousand 

constraints, several thousand continuous variables, and an equal number of binary variables. Our 

results suggest that SCOUT's computational requirements can be significantly reduced (from 

hours to minutes) and SCOUT's integrality gaps can be tightened by applying discount factors to 

both costs and tasking shortfall penalties, and by using continuous variables to model some 

research-and-development concepts. These two modifications result in the most improvement in 

performance throughout all computational experiments without significantly altering solution 

quality. Reducing time-period granularity results in only modest performance enhancement. The 

branching hierarchies we discuss have an unpredictable influence on results. The effects of 

combinations of modifications we impose simultaneously are inconclusive. We encourage the 

introduction of discounting and fractional research-and-development concepts, keeping in mind 

that the greatest achievements in performance often occur within the first ten to twenty minutes of 

run time. 
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APPENDIX 

Tasks are components of capabilities, which, in turn, are components of planning areas. 
Following is a list of all of these, as used by the Air Force Space Command. 

Planning Area 1: Aerospace superiority 
Capability 1.1: Dominate operations in the air medium 

Task 1.1.1: Suppress adversary air defenses 
Task 1.1.2: Neutralize adversary air and cruise missile capabilities 

Capability 1.2: Dominate operations in, from, and through the space medium 
Task 1.2.1: Protect friendly space capabilities 
Task 1.2.2: Protect friendly missile capabilities 
Task 1.2.3: Neutralize adversary space capabilities 
Task 1.2.4: Provide national and theater missile defense 
Task 1.2.5: Operate space assets 

Planning Area 2: Rapid global mobility 
Capability 2.1: Provide access to, from, and through space 

Task 2.1.1: Deploy space assets 

Planning Area 3: Global attack and precision engagement 
Capability 3.1: Perform global attack of surface targets 

Task 3.1.1: Neutralize non-weapons-of-mass-destruction targets 
Task 3.1.2: Deter and counter weapons of mass destruction 

Planning Area 4: Information superiority 
Capability 4.1: Dominate operations in the infosphere 

Task 4.1.1: Conduct defensive counter information operations 
Task 4.1.2: Conduct offensive counter information operations 

Capability 4.2: Gain and exploit information 
Task 4.2.1: Provide information on space events, activities, and threats 
Task 4.2.2: Provide information on air events, activities, and threats 
Task 4.2.3:   Provide information on surface and sub-surface events, activities, 

and threats 
Task 4.2.4: Provide information on infosphere events, activities, and threats 
Task 4.2.5: Provide environmental monitoring information 
Task 4.2.6: Provide global satellite communications 
Task 4.2.7: Provide global positioning and timing information 

Planning Area 5: Global Awareness and Command and Control 
Capability 5.1: Provide command and control 

Task 5.1.1: Monitor global conditions and events 
Task 5.1.2: Assess global conditions and events 
Task 5.1.3: Plan military operations 
Task 5.1.4: Execute military operations 
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Planning Area 6: Agile combat support 
Capability 6.1: Protect forces 

Task 6.1.1: Provide physical protection of ground assets 
Capability 6.2: Sustain forces 

Task 6.2.1: Provide weapon system life cycle maintenance and sustainment 
Task 6.2.2: Conduct force development evaluations of space and missile forces 
Task 6.2.3: Conduct readiness exercises 

Capability 6.3: Support Installations 
Task 6.3.1: Develop, operate and maintain facilities 
Task 6.3.2: Provide contingency engineering support 
Task 6.3.3: Provide transportation support 

Planning Area 7: Quality people 
Capability 7.1: Train personnel 

Task 7.1.1: Provide operational training 
Capability 7.2: Educate personnel 
Capability 7.3: Retain personnel 

Task 7.3.1: Provide quality of life 
Capability 7.4: Access (recruit) personnel 
Capability 7.5: Promote good order and discipline 

Planning Area 8: Innovation 
Capability 8.1: Provide Innovation 

Task 8.1.1: Support innovation 
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